The environmental challenges, demands and subsidies from farmers point of view

Raisio 10.7. 2018 Paavo Myllymäki

Dr. Liisa Pietola, Head of Environmental Affairs

Our goal is sustainable farming

- The three dimensions of sustainability
 - 1. Environmental
 - 2. Social
 - 3. Economic

- > Our goal is to maintain the resources the livelihoods dependent of them and the welfare and to pass them on to the next generations
- Our goal is to secure food supply by all three dimensions of sustainability

Environmental challenge

- How to produce food without impact on the environment?
 - There is no way:
 - Cultivation affects nature and utilizes natural resources

- Key question:
 - How to produce food with minimal effects on the environment?

Farming modifies natural balance of soil-plant ecosystem towards field ecosystem

- We till and seed the soil
- We have traffic on soil
- We harvest the fields

- Soil will be depleted
 - If we do not return the nutrients taken up by the yield
 - Importance of right rate, place, time and nutrients of fertlization
 - Importance to control losses from the field (leakage, emissions)
 - If we do not return the organic material which is harvested:
 - Importance of plant residues, crop rotation, manure

Environmental demand

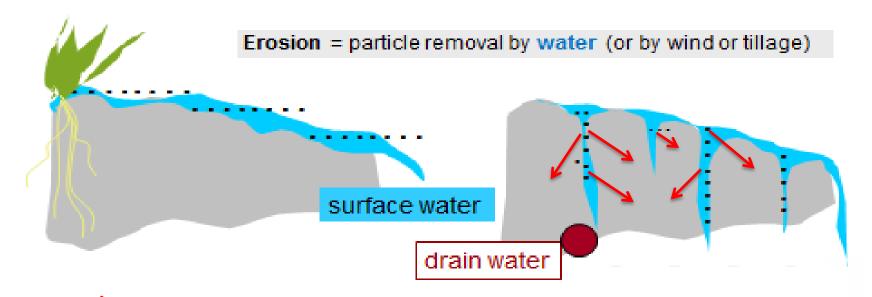
- To produce more with less
- Soil is a natural resource Treat it well
 - Make the most use of your field Make it grow
- Resource-efficiency means good yields of high quality
 - = Good soil growth conditions to maximize the growth potential
 - Good soil structure and sufficient drainage
 - Fertile soils with balanced fertilization
 - Efficient and safe recycling of nutrients

Best fertilization practises

Plant available nutrients with no harmful substances

Putting best practises into work

- Farmers need site specific tools to control nutrient losses and make most use of nutrients and cultivated soils:
- E.g. plant cover, catch crops, buffer zones,
- To atchieve the best use of nutrients we need to maintain good soil structure by drainage and liming
 - drainage is our key to nutrient use efficacy



Control of nutrient runoff from fields

IMPORTANCE OF DRAINAGE AND SOIL STRUCTURE

Infiltration to soil micropores from macropores: Safe from leaching

Nutrient use efficiency

NEEDS DRAINAGE

To control runoff
To maintain **soil aeration**i.e OXYGEN supply
FOR NUTRIENT UPTAKE
BY PLANTS

Continuous macro pore containing oxygen

Water in soil aggregate

Water between soil aggregate

To maintain **porous structure**TO MOVE NUTRIENTS SAFELY
TO MICROPORES
AND PLANT ROOTS

Drainage as the key factor of water management in the BSR

- Without a sufficient drainage we have
 - Runoff
 - Erosion and nutrient leakage
 - Lack of oxygen
 - Poor growth and NOx emissions
 - Wet soils vulnerable to soil compaction
 - Poor water infiltration

Environmental subsidies

Needed until we get the appropriate price from our goods economical agriculture have afford for agri-environmental tools

Should allow and promote

1. The best use of soil and growth

Growth-potential base fertlization

2. Environmental investments

- E.g. drainage and crop rotation
- Manure treatments and storage capacity
- Erosion control buffer zones, reduced tillage...

Many thanks

For more information paavo.myllymaki@mtk.fi

